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Abstract 

Shutdown, Turnaround, and Outage (STO) projects dealing with preventive, proactive or reactive 
maintenance are among the most complex and challenging ones in process industries. Their management 
is improved by incorporating advances in digital technologies and, particularly, in data analytics, 
computational and artificial intelligence (AI), leading to “Data-Driven Project Management (DDPM)”. A key 
issue arising is the type/nature of data that are used to support DDPM. We herein identify the key attributes 
of such data and show that they form a multidimensional set. 

Further, we explain how this multidimensional nature shapes the approaches to capture and analyze 
data and highlight the interplay between data analytics and the digital transformation that companies 
undergo, to increase their PM maturity. We demonstrate how multidimensional data analysis (MDDA) and 
information visualization (IV) leverage PM efficiency, and inversely, how the increased need for holistic PM 
triggers the development of sophisticated data analysis algorithms and tools. We critically evaluate how and 
to what extent, the advent of machine learning (ML) can supplement/replace existing approaches and 
highlight experiences from recent, pragmatic turnaround projects. A set of implemented “digital best 
practices” corroborates the importance of MDDA and IV in this family of projects and favors their use. 
 
Keywords: Data-driven project management, data analytics, information visualization, digital 
transformation, computational intelligence. 
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1. Introduction 

Shutdown, Turnaround, and Outage (STO) projects that deal with preventive, proactive or reactive 
maintenance are considered among the most complex and challenging ones in process industries. They 
take place periodically depending on the needs of safe operation and quality production and their main 
objective is to allow for inspections, repairs, replacements and overhauls that can be carried out only when 
the plant facilities are taken out of service.  

Turnarounds (T/A) typically refer to a periodic planned period of maintenance in a plant. They take place 
every 3 to 5 years, with this period depending on the equipment condition, the type of industrial units, the 
necessity of expansion to enrich the variety of products, etc. During their execution, the plant is not 
operational in its entirety, which also gives the opportunity to inspect, revamp and perform overhauls. 
Turnarounds are characterized by intense labor activity resource needs (exceeding 1,200 people/day on 
average), dense and high expenditures (typically ranging between $80M to $150M), strict time constraints 
(4-6 weeks), and increased uncertainty. Moreover, during turnarounds, production completely pauses, 
leading to a reduction of revenue which may affect financial outcomes (Sahoo, 2014; Tsang; 1998). On the 
other hand, this maintenance window allows not only for corrective repairs but also for planned inspections, 
revamping, process redesign, replacements, overhauls, etc., thus safeguarding the plant operation for the 
foreseeable future. 

Shutdowns resemble to turnarounds, but they may affect a smaller part of the plant, usually a unit or a 
cluster of units, and they do not necessarily require the full pause of operations. They may also be 
unplanned, or maybe scheduled to take place when some type of shortage in the incoming raw material is 
anticipated, or even may stem from an unexpected accident or a disaster. Finally, outages happen when 
failures of equipment occur, when product deliveries fail to arrive, or even the power supply is interrupted; 
thus, outages are mostly unplanned. 
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The management of STO projects presents different challenges depending on the project type. The key 
challenge is to execute the correct scope with minimum operational disruption, while fully respecting the 
safety requirements, at the same time. In this regard, T/A projects are characterized by the complexity and 
the plurality of the scope to be performed (typically exceeding 20,000 tasks), a situation often aggravated 
because of the inherent uncertainty in the condition of the equipment to be maintained which in turn 
increases risks. Thus, these projects require highly detailed, meticulous planning for an extended period, 
well before their scheduled start (Bevilacqua, M., Ciarapica, FE., et. al., 2012; Shaligram, P., and Jiao, J., 
2008). It is common for a devoted and aware planning team to spend at least 2 years for that purpose. 

Shutdown projects face similar challenges, differing however in the complexity and plurality of tasks, 
and quite often, in the financial impact to the industrial organization, as operation suspension is not always 
necessary. As they are also mostly preventive in nature, they avail time for planning and procurement 
preparation. They may profit from good practices for T/A projects, and they may generate valuable 
knowledge and insights for the future. Finally, outage projects are mainly reactive in nature, thus they 
require established plans and processes to exist, and they are susceptible to issues related to a lack of 
spare parts, at least for critical equipment. 

Evidently, T/A projects are the most intriguing of all; they require long-term preparation, solid and holistic 
PM, well-organized personnel, systematic knowledge and expertise, as well as the ability to profit from 
technological advancements. They are tightly linked to the enterprise asset management strategy of a 
company, may have an impact on the supply of critical products or increase the strain on other suppliers to 
meet demands, and are directly related to the financial viability of an enterprise. Therefore, in this work we 
focus on turnaround projects since they encompass the most complex and ambitious goals for a process 
industry. 

This work is structured as follows. In Section 2, we review the evolution of T/A Project Management 
approaches driven by technological evolutions. Then, in Section 3, we explain the multi-dimensional nature 
of data, we introduce the term of data-driven project management (DDPM), and we highlight the areas most 
affected and profited from data analysis. Section 4 establishes the contextual frame of our case study, 
which capitalizes on experiences over the past fifteen years in pragmatic T/A project. A set of implemented 
“digital best practices”, elaborated in Section 5, strengthens the importance of MDDA, information 
visualization and computational intelligence in this family of industrial projects. Finally, in Section 6, we 
critically evaluate how and to what extent, the advent of computational and artificial intelligence can 
supplement/replace existing approaches,. we summarize our key findings and highlight areas of future 
research. 

2. The Evolution of Turnaround Project Management 

The management of T/A projects has followed an evolution path during recent decades. Although the 
core characteristics and objectives have solidly held their place, a multitude of augmented characteristics 
have appeared, activated primarily because of the capabilities that accompany the growth in data science 
and information management. In particular: 

• During the ‘90s, industrial companies strove to secure a complete scope of activities, to be 
performed at a planned duration, subject to safety requirements. The delegation of maintenance 
activities was largely a matter of expertise, while planning was tedious and often limited to only a 
few thousand tasks. The scope of equipment to be maintained was rather broad and often included 
unnecessary items, only to profit from the operational downtime. Communication was vertical and 
progress feedback was elementary. PM was primarily targeted to internal stakeholders. 

• During the ‘00s, PM information systems permitted the planning of a larger number of tasks, while 
risk evaluation tools enabled the more precise identification of equipment to be maintained. The 
communication grid became denser and the progress feedback was improved. PM now included 
in-house personnel as well as contractors and suppliers and addressed financial aspects. 
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• During the ‘10s, knowledge management systems enabled rapid development of plans and offered 
accurate identification and prioritization of equipment needing maintenance; information systems 
and reporting permitted the generation of targeted, customized, multi-level reports; progress-
feedback became richer, timely, more accurate and more complete. Data analytics methods were 
adopted to profit of the vast amount of available data and to support the corresponding DT efforts 
(Lee, J., Kao, H.-A., and Yang, S., 2014; O’ Donovan, P., et al., 2015; Karim, R., et al. 2016; Uhlmann, 
E., et. al., 2017). 

• During the ‘20s, PM has been largely affected by the growth of data analysis, Machine Learning (ML) 
and AI tools, and is becoming far more sophisticated addressing areas well beyond the planning, 
execution, monitoring, and control of the T/A activities; these areas now include procurement 
management, enterprise asset management, information and knowledge management, supply 
and demand management, etc.  

The above evolution scheme is representative of the approach that most oil & gas industries have 
approached T/A projects and was propelled by the parallel burst of technological (mostly digital) 
advancements. This evolution, however, necessitated the adaptation and gradual change of companies, to 
encompass the benefits of the digital era, not only in the form of digital transformation but mostly in terms 
of culture and governance. 

The importance of data collection, analysis and utilization for the improvement of processes in T/A 
projects is well documented. Shou et al. (2020) analyze and classify value-adding and non-value-adding 
activities in maintenance processes, outlining the pitfalls of ineffective data management, i.e., collecting 
data with no value or failing to collect vital data. The importance of data reliability is also stressed in 
(Rantala, Kortelainen and Ahonen, 2021), with respect to the preparation (e.g., asset condition and 
maintenance history), the execution (e.g., information sharing and quality monitoring) and closing of T/A 
projects (e.g., properly updating Enterprise Resource Planning (ERP) systems with data gathered during the 
process). Karim et al. (2016) use the term “maintenance analytics” to refer to the process of data 
acquisition, transition, fusion, mining and information extraction and visualization in order to support 
effective maintenance decision-making. The increasing volume of related data and hence of big data 
analytics in T/A projects is discussed in (Al-Turki, Duffuaa and Bendaya, 2019) and references therein, also 
in view of the application of “Industry 4.0” tools and techniques in maintenance (Jasiulewicz-Kaczmarek 
and Gola, 2017; Silvestri et al., 2020; Tortorella et al., 2024). Accordingly, frameworks utilizing data to 
establish decision support tools for T/A projects have also been proposed (Bumblauskas et al., 2017; 
Mitrofani, Emiris and Koulouriotis, 2020). 

In this work, we attempt to highlight the interplay between data analytics and the various dimensions of 
transformation that industrial companies undergo, as they increase their project management maturity. We 
demonstrate how MDDA and information visualization leverage the project management efficiency for 
turnaround projects, and inversely, how the increased needs for more efficient and holistic project 
management trigger the development of ever more sophisticated data analysis algorithms, techniques and 
tools. 

3. The Multiple Dimensions of Data and their Role in PM Evolution 

The management of complex and challenging projects (including industrial ones, such as turnarounds), 
can be vastly improved by profiting from the advances in digital technologies and particularly, in data 
analytics. A plethora of data from diverse sources can be obtained and processed for various purposes and 
different objectives to support the management of challenging projects and to lead eventually to a “data-
driven PM” (or DDPM), a term we coin herein to describe the goal of continuous improvement and 
transformation of PM approaches. 

The question that arises therefore, is what type of data can be used to support DDPM and what is their 
nature. The key attributes of these data constitute a multi-dimensional set, each dimension of which 
corresponds to one attribute. We have identified these independent dimensions to be: 
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• The appropriate data acquisition frequency (implicitly affecting the size of the data set) – this is also 
related to the change pace of data and to the ability of data sources to produce/provide updated 
datasets 

• The change pace of data (fast to static; affects the span of information validity) – fast changing data 
are those that have a very brief validity lifecycle, as in the case of work updates; semi-static data 
may be sensory readings for a slowly-evolving malfunction 

• The data types (technical, financial, etc.) – these data can be obtained from field operations (for 
instance, to report progress), from other software applications (for instance, when financial or 
inventory data are needed), from planning teams (for instance, when updates and re-planning are 
performed), etc. 

• The data sources (e.g., sensors, people) – data regarding project progress are mostly provided by 
humans using appropriate digital tools, while data that are used for predictive maintenance 
purposes are mainly obtained by on-board equipment sensors (e.g., vibration, temperature, 
acceleration, etc.) 

• The diversity of information dissemination objectives (e.g., field guidance, management overview) 
– this characteristic has an impact on the tools and strategies that may be employed to serve the 
purpose 

• The expected frequency of updates of derived information – this is mostly important when primary 
data is varying, thus prompting the need to frequently update information 

• The criticality of information-based decisions (proactive, tactical, strategic) 

• The lifecycle of the data analysis results and of the generated information (e.g., eventual or 
knowledge generation) 

• The information computational and visualization requirements and types 
 
Evidently, there may also exist other parameters/ dimensions that may characterize data, such as 

cybersecurity, content sensitivity, etc., yet these are often context-specific and are thus omitted in the 
present analysis.  

Project teams that plan to employ data to develop tools and practices that may boost project 
management in an industrial environment, inevitably should consider these multiple dimensions. This, 
however, is not sufficient, as any digital tools or practices need to consider the internal and external context 
of operation, the involved parties, the technological infrastructure and limitations, the culture, etc. We thus 
identify four additional data-related dimensions, as follows: 

• Stakeholders: Which stakeholders are involved? What is their type (internal, external, etc.), their 
population and their attitude towards providing data and using derived information? Are they 
perceiving the change as an opportunity or as a threat? Who should be involved first and in what 
role? How can we ensure their efficient engagement? What is the existing culture and how does it 
change over time? 

• Technology: What types of software and systemic tools are in place and/or available? What 
technological or technical limitations exist? Are there enough data sources  to support a data-
driven transformation of PM? How can the technical integrity be assured through the seamless 
operation of the Information Technology (IT) ecosystem? 

• Knowledge: Are there any historical data, templates or knowledge sources and repositories that 
could support the transformation? Are there any processes in place? Does a coherent training plan 
exist? Are mistakes and lessons learned recorded? 
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• Difficulty of implementation: What are the technical elements that facilitate (or obstruct the 
implementation) of data collection and processing? What are the human-related factors (e.g., 
attitude) that may inhibit the implementation and use of data practices? 

Moreover, the scope of implementation of digital tools and the timing of application may decisively affect 
their adoption or rejection. These two additional dimensions can thus be considered to complete the set of 
data-related dimensions. These are briefly elaborated below. 

• Scope of Implementation: How extensive can / should a DDPM implementation be? Are there any 
constraints, industrial standards or legal obligations that dictate the need to transform? Should the 
transformation concern a small internal community, or should it affect the entire organization or 
even external partners? 

• Timing: What is the starting point? What actions should be performed, and in what sequence so 
that people trust the process? Which transformation activities are implemented over time? How 
does stakeholder feedback affect the timeline? How often is the time plan revisited? When are 
quick wins scheduled and what is their content? 

We have therefore identified a set of fifteen different data-related “dimensions”, all of which need to be 
considered when coupling data analytics methods with project management practices. Evidently, the 
mining, processing, usage and transformation of data related to all phases of an industrial project also 
affects the efficiency of project planning and replanning, the project governance through the conformance 
to standards and regulations, the safety through the assurance and communication of regulations and 
recording of incidents, and the control of project execution through timely, accurate and targeted 
information. In our study, however, we confine our analysis to the aforementioned data-related dimensions. 

4. Context of the Case Study 

We hereby illustrate the implementation of DDPM, the distinct aspects of multi-dimensional data 
analysis to support it and the resulting DT outcomes. Our findings are the result of fifteen years of working 
on turnaround (and shutdown) projects in a leading oil & gas company, in two out of three main industrial 
sites (refineries).  

The key characteristics of our case study are: 

• The timespan of our study starts in 2007 and ends in 2022; during this period, ten (10) major 
turnarounds (and several shutdowns) were implemented while the functionalities of the software 
centrally used (MS Project Server) were vastly improved (Fig.1).  

 

Fig. 1 Timeline of Major Events and Platform Evolution (different colors for distinct sites). 

• The average duration of execution was 38 days (on a 24/7 schedule) with an average of 
750.000 person-hours in total, from almost 2.000 people per day.  
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• The human resources were internal and external, multi-national, individuals or contractors, with 

appropriate training; special (and support) teams were also involved. 

• All types of equipment that can be encountered in such an industrial environment were subject to 
maintenance; these were heaters, columns, heat exchangers, reactors, vessels, compressors, 
valves, instruments, etc. The scope of maintenance progressively increased through the years as a 
result of implemented DDPM practices (Fig. 2). 

 
Fig. 2 Temporal Evolution of Scope (for one site). 

• Apart from the typical maintenance works, inspections, repairs, and overhauls were also 
performed; planning also integrated general stoppage/startup and 
decontamination/commissioning tasks. 

• The average planning duration to provide the pre-execution baseline was about 2.5 years and 
involved multiple divisions and departments of the company. 

Our efforts culminated with the time-phased development of a number of “digital practices” (DPs) that 
addressed the ever-growing needs and requirements and ended up forming a robust infrastructure for 
DDPM. These DPs were then standardized and adopted.  

In Table 1 below, we summarize the timeline of requirements, tools, a delegation of the implemented 
digital practices, and other useful indices that explain our methodology. 
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Table 1 Timeline of Requirements, Tools and Implemented Digital Practices 

 REQUIREMENTS* T/A Key Digital Practices (DPs) Areas affected 

20
08

-0
9 

• To have a good depiction of schedules for static equipment only → 
Establishment of SPMO 

2 

DP1: Standardization of PM processes and 
development of Shutdown Project 
Management Office (SPMO) 

Integration 
Scope 

20
10

-1
2 

• To obtain good estimates 
• To include plant and unit works in the scope 
• To model and monitor major contractors 
• To establish key planning and controlling processes and issue KPIs 
• To report the progress of critical tasks 
• To integrate in the MSP server and organize portfolio 

2 

DP1: Improved version 
DP2: Development of tool for risk-based scope 
freeze  
DP3: Templates for equipment (as flow charts, 
WBS and schedules) 
DP4: Projects and portfolio repository 

Scope 
Scheduling 
Procurement 

20
13

-1
5 

• To include all works for all equipment types 
• To create templates for work families 
• To enable collaboration 
• To create visual reports 
• To develop knowledge repositories 

2 

DP3, DP4: Improved versions 
DP5: Knowledge repository 
DP6: Visual tools for collaboration and 
communication 

Scope 
Scheduling 
Communication 
Knowledge 

20
16

-1
8 

• To pluralize communication tools & channels 
• To integrate data from different sources 
• To employ newer tools and functionalities 
• To utilize lessons learned 

1 

DP2: Development of tool for risk-based scope 
freeze using fuzzy logic 
DP4, DP5, DP6: Improved versions 

Scope 
Scheduling 
Communication 
Knowledge 

20
18

-2
0 

• To create fully dynamic, real-time, visual reports 
• To develop robust forecasting algorithms 
• To be risk-proactive 
• To address procurement needs 
• To employ more advanced data analysis methods 

2 

DP6: Improved version 
DP7: Graphical tools 
DP8: Business Intelligence (BI), reporting & 
forecasting tools 

Integration 
Strategy 
Communication 
Knowledge 
Asset Management 

20
21

- • To integrate into one platform as a single point of communication 
• To test the feasibility of predictive maintenance in pilot equipment 1 

DP7: Improved version with geographic info  
DP9: Automated data acquisition and analysis 
for fault diagnosis using ML 

Communication 
Knowledge 
Asset Management 

* Items in bold indicate requirements that created conflicts among stakeholders 
* Items in italics indicate Digital Transformation relevant requirements and/or technological challenges
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The above table sheds light into the modular, time-phased, and enriched implementation that took place 
and progressively created a DDPM mentality and methodology, which contributed to the overall digital 
transformation of project management in this company, largely by profiting of the advent on digital 
technologies. It should, however, be stressed that success cannot be accomplished by merely applying data 
analysis tools and methods; rather, it requires that one has a broader perspective and understanding on the 
multiple dimensions of data, which are not only technical but also (and probably, mostly) human oriented.  

Notice that Digital Practice 1 (Standardization of PM processes of SPMO) is considered fundamental for 
the efficient PM of T/A projects. It turned out that the use of PM tools and techniques is very useful for T/A 
projects due to the complexity of the process, the high cost, high risk, the large amount of resources involved 
and the short duration. Additionally, the standardization of processes triggers the examination of necessary 
aspects to be managed in these projects, such as the collection of requirements, the analysis and freezing 
of the scope, the scheduling structure and techniques, the communications mentality, the procurement 
monitoring, etc. A formal organizational structure, an SPMO, is thus absolutely essential for the proper 
management of such projects. The results of this effort have been presented in (Emiris, 2013). 

5. Implementation Cases 

We now highlight the role of data multidimensionality through four distinct cases of data usage and the 
corresponding DPs, obtained from our experience on T/A projects: 

(i)  Data were obtained from focus groups and key stakeholders and were used to develop DP2 that 
resulted to a tool for risk-based scope freeze using fuzzy logic;  

(ii)  Field data obtained from execution teams (workers) to report the progress of works and generate 
instructions; these were employed to develop DP6 

(iii)  Secondary data generated from the PM information system to extract forecast completion times 
and costs; these were employed to develop DP8  

(iv)  Sensor data were obtained from equipment to evaluate maintenance needs and to produce DP9 
dealing with the automated data acquisition and analysis for fault diagnosis using ML 

In view of the above, we can characterize these data as follows (Table 2). 

Table 2 Characterization of Data Types and Data Dimensions 
 

 Data Types 
Data Dimensions Focus groups Field data Project data Sensor data 

Data acquisition 
frequency  

2-3 times during 
planning 

1-2 times per day 1-2 times per day A few seconds 
every day for a 
week 

Data change pace  Almost invariant Varying Slowly varying Semi-static 
Data types  Technical, cost Technical, safety Time, cost, KPI Technical 
Data sources data People, historical People Information system Sensors 
Diversity of 
dissemination 
objectives  

Planning 
Safety 

Field guidance 
Reports and 
updates 

Management 
overview 

Maintenance 
planning 

Frequency of 
information updates  

Twice/year Once/day Once/day Once every 3-6 
months 

Decisions criticality 
Proactive 
Strategics 

Proactive 
Tactical 

Tactical 
Strategic 

Proactive 
 

Data analysis and 
information lifecycle  

Permanent 
Knowledge dev’t 

Eventual Eventual Knowledge dev’t 
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Computational and 
visualization 
requirements and 
types 

BI and Fuzzy Logic 
(FL) tools 

BI tools BI tools ML and BI tools 

Stakeholders 

Motivated 
engineers, 
contractors, need 
training 

Field workers, 
internal, express 
concerns, need 
training, motivated 

Middle and senior 
management, 
positive, main 
source of 
requirements 

Engineers, 
internal & 
external, 
specialized, 
enthusiastic, 
need 
encouragement 

Technology 

 Simple digital tools, 
spreadsheets, 
tablets 

Existence of project 
or portfolio IS 

Advanced and 
specialized 
software tools, 
high-computing 
power 

Knowledge 

Past reports Templates for 
progress reporting, 
required training for 
accurate reporting 

Customized and 
standardized 
forms, graphs, 
reports 

Benchmarks, 
historical data, 
failure analysis 

Implementation 
difficulty 

Low Moderate to low Moderate Moderate to high 

Scope of 
implementation 

Starting from focus 
groups, approval 
from top 
management  

Starting from 
internal teams and 
focus groups and 
expanding to all 
sorts of people and 
works 

Starting from 
internal 
management team 
and expanding to 
all departments 
and levels 

Long-term efforts 
for specific family 
of equipment, 
expanding 
gradually 

Timing 

Fundamental 
planning activity 

Among the very first 
data-related 
activities 

Once systems are 
in place and 
enterprise PM is 
established 

Appropriate only 
for mature stages 

We now elaborate on these digital practices. 

5.1 DP2: Development of Tool for Risk-Based Scope Freeze using Fuzzy Logic 

In this DP, data obtained from focus groups and key stakeholders to evaluate, mitigate and freeze the 
project scope, using fuzzy logic (FL). Towards this, we developed a Decision Support System (DSS) that 
employs fuzzy logic to help define the scope of maintenance works in T/A projects. The developed system 
encompasses and combines crisp technical and functional parameters with experts’ judgment to generate 
a “verdict” on whether or not to include the equipment in the project scope; moreover, constraints were 
applied to ensure the fulfillment of legal obligations or operational necessity and to exclude compromise in 
Health, Safety and Environment issues.  

Proper scope definition is fundamental for project planning and execution, and of paramount importance 
in T/A projects. The necessary data were collected only a few times during planning, as they remain rather 
invariant. Stakeholders were positive in providing the data and in maintaining a historical information 
database. We first invited stakeholders, organized in focus groups, to provide data for certain parameters 
that were combined to calculate the so-called Justification Factor (or J-factor) introduced by Shell company 
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(Shell, 2000), which is based on the evaluation of risk factors (before and after maintenance); this factor is 
then compared with the relevant maintenance cost, resulting to a mostly cost-centric decision. In our 
implementation, we modified this decision mechanism by introducing new parameters for which data were 
obtained. These parameters were: the Mean-Time-to-Repair (MTTR), the Mean-Time-Between-Failures 
(MTBF), the Reliability (REL), and the Value of the Equipment (VAE), for each piece of equipment, along with 
the Criticality (CRT) of the equipment to the overall operation (as evaluated by experts) and the Total 
Operational Cost (TOC) resulting from equipment failure. 

A fuzzy-logic tool developed specifically for this purpose, generated a ranking and categorization of 
equipment in terms of need and urgency to maintain, and provided a much more reliable scope of works. 
Figure 3 displays the structure of the developed system, while Figure 4 illustrates the membership functions 
for the variable CRITICALITY and decision surfaces for combined criteria. These explanatory visualizations 
of the decision surfaces and the resulting numerical results helped mitigate risks and optimize scope freeze. 
More results were presented in (Mitrofani and Emiris, 2019; Mitrofani, Emiris and Koulouriotis, 2020).  

 

Fig. 3 Structure of the Fuzzy Logic System to Evaluate Maintenance Needs 

 

Fig. 4 Membership Functions for the CRITICALITY Attribute and Decision Surfaces for Combined Criteria 
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5.2 DP6: Visual Tools for Collaboration and Communication 

In this DP, we faced from key stakeholders the requirement to create clear, well-understood, friendly, 
dense and meaningful reports, preferably visual, to enhance communication and to encourage 
collaboration. This requirement aimed to bridge a bi-directional gap: firstly, the gap between the need to 
obtain accurate and timely information from the field and the often scarce, erroneous, and unreliable 
information realistically obtained; secondly, the gap between the need to produce clear, timely and focused 
instructions to the workforce and the reality of spontaneous, generic, redundant set of instructions 
generated.  

In a pragmatic T/A setting, this is indeed a very crucial requirement: simplicity and friendliness of reports 
enhances participation and improves accuracy; accuracy supports prompt decision-making with clarity; 
clarity helps saving time and increases safety, etc. We thus organized the frequent collection (twice a day) 
of massive field data from a large number of people for a large number of tasks (>1.200 per day). These were 
all eventual data in the sense that their lifecycle was limited only for the time between two reports.  

Technology played a crucial role in the implementation of solution, as it enabled the development of 
visual tools and the use of reports in mobile devices. Although stakeholders were skeptical (if not negative, 
at times) with frequently reporting their work progress, their attitude swiftly changed to positive as they 
overcame the technological barrier and realized that the reports simplified their work.  

Figure 5 illustrates such a visual report specifically designed to collect data from the field for the progress 
of works from the directly involved stakeholders; this easy to use report fetched data and fed them 
automatically to the information system. The implementation of this (and other similar reports) required the 
use of SharePoint and MS Project Server BI functionalities. Figure 6 displays another visual report that 
dynamically updates a short-to-long-term calendar of upcoming works for a particular job center, based on 
the input data. 

 

Fig. 5 Visual Report to Collect Work Progress Data from the Field in Near-Real Time. 
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Fig. 6 Dynamic, Long-Term Calendar of Upcoming Works. 

5.3 DP8: BI, Reporting and Forecasting Tools 

This DP resulted as a response to the requirements of developing robust forecasting algorithms and to 
be risk-proactive, by using even more advanced data analysis tools. Forecasts that can be easily updated, 
and which can be easily drilled-down per operational unit, were needed in order to plan when works would 
be completed, thus permitting production and sales planning. This in turn, minimizes risks of running out of 
inventory, permits determining the time that on-field logistics support will be needed (decreasing again the 
costs) and helps identify problematic areas that need special attention, acceleration of works, etc. 

To develop these tools, we used secondary data, that is, data generated once or twice a day from the PM 
information system through data analysis. We produced either ready-made indices or customized ones and 
we implemented forecasting algorithms that were fine-tuned to minimize forecasting error. These tools 
helped produce meaningful reports, welcomed by the top management, and permitted strategic decision-
making. An additional benefit was that these data were all integrated in a knowledge base with historical 
information that may be used in the future.  

Figure 7 displays a summary progress report for one family of equipment, where works are grouped in 
phases. Here, the primary data were input in the project plans and secondary data were generated to create 
this report.  
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Fig. 7 Summary Progress Report Using BI Tools. 

Figure 8 illustrates a forecasting report for one unit, updated twice a day, that integrates most widely used 
Earned Value Management (EVM) indices along with several custom ones. Again, the cumulative indices are 
a result of processing of the primary data to generate secondary ones.  

 

Fig. 8 Forecasting Report Generated from Secondary Data. 

5.4 DP9: Automated Data Acquisition and Analysis for Fault Diagnosis using ML 

In this DP, we dealt with the problem of Predictive Maintenance (PdM) for rotational equipment and, 
particularly, compressors, and we applied ML techniques on large data sets obtained from on-board 
sensors. Equipment with rotational components exhibit vibrational behaviors, thus we attempted to 
evaluate the fault levels of certain components by analyzing vibration frequencies data (El-Thalji, I., 2019; 
Mukherjee, S., Kumar, V., Sarangi, S., Bera, T.K., 2020).  

We first collected high-sampling frequency data for short time periods and identified the most useful 
features in the frequency and time domains from these on-board sensory datasets, that enable efficient 
classification and pre-processed (filtered and denoised) the data to extract these crucial features using 
computationally efficient techniques; we thus created a palette of features to be considered, and ranked 
these features based on the importance and redundancy using the one-way ANOVA technique. Figure 9 
displays a snapshot of the time-series of these high-frequency data obtained from experimental and real-
world settings. We, then, experimented with two different clustering and classification algorithms, namely, 
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k-Nearest Neighbor (KNN), Support Vector Machines (SVM) with different kernel options, to train and test 
fault classification. The obtained results, illustrated in Figure 10 along with the flowchart of the ML tool, 
demonstrated high classification accuracy (to the order of 93,5%) of faults and justified the feasibility of 
implementation in industrial setups.  

Fig. 9 Time Series of Data Used for Machine Learning and Fault Diagnosis 

 

Fig. 10 Flowchart of ML Algorithm and Classification Accuracy of Faults 

A key benefit of this DP was proving the feasibility of detecting where exactly the failure occurs remotely 
using only sensory data; moreover, it was shown that it is possible to identify the level of severity of the failure 
to plan maintenance works. Additionally, these actions may be implemented remotely, without 
disassembling the equipment, thus leading to decrease of maintenance cost and time, increase of uptime, 
and implementation of predictive maintenance strategies which help eliminate unnecessary replacement 
of spare parts, reduce work effort, and minimize the risk of accidents. A detailed presentation of these 
results can be found in (Emiris, 2023). 

6. Critical Evaluation, Conclusions and Guidelines for the Future 

In this work, we have highlighted the interplay between computational intelligence and data analytics 
approaches, and the digital transformation that industrial companies undergo, as they increase their PM 
maturity and culminate to DDPM. We demonstrated how multidimensional data analysis and information 
visualization leverage the project management efficiency for turnaround projects, and inversely, how the 
increased needs for more efficient and holistic project management trigger the development of ever more 
sophisticated computational algorithms, techniques and tools.  
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Our findings were based on experiences and practices in pragmatic T/A projects over a 15-year time span 
in two main industrial settings. The main limitations encountered were related to existence and use of 
technology and S/W tools, as well as to the adoption of digital practices from certain stakeholders. We have 
observed that the advent of technology and the adoption of similar practices from other companies, 
especially in most recent years, is acting as an enabler of DDPM; we expect this to improve further in the 
coming years. We have further highlighted the use and applicability of MDDA to create visual information 
tools and reports; we have also illustrated set of implemented “digital best practices” which corroborate the 
importance of MDDA and information visualization in this family of industrial projects. These can be used to 
support DDPM and to facilitate digital transformation efforts in companies dealing with industrial projects.  

Several of the digital practices we implemented have involved elements, methods and techniques in the 
domain of machine learning and computational intelligence; other digital practices have not. DP1 
(Standardization of PM processes and development of a Shutdown Project Management Office) has little to 
benefit from the advent of computational and artificial intelligence. In the first category, we have witnessed 
a beneficial contribution in practices such as, the “development of a tool for risk-based scope-freeze using 
fuzzy-logic” (DP2), “Automated data acquisition and analysis for fault diagnosis using ML” (DP9), “Business 
Intelligence (BI), reporting & forecasting tools” (DP8), “Visual tools for collaboration and communication” 
(DP6), to name a few. The development of these practices is expected to be further facilitated and become 
more efficient, even using common AI tools (such as Copilot for designing reports). Data acquisition, 
filtering, denoising, clustering, etc., is also expected to become far easier. Moreover, WBS development, 
task planning and scheduling, is already feasible in short times with the use of AI tools (although we noticed 
that human intervention is still necessary). 

On the other hand, there exist digital practices we developed which are not discernably benefited by 
computational intelligence tools, such as, the “Standardization of PM processes and development of 
Shutdown Project Management Office (SPMO)” (DP1) or the “Development of projects repository” (DP4), 
although substantial use of information technology platforms is made. The soft skills of the PM and the PM 
team are critical in such endeavors and will continue to be necessary for the foreseeable future. 

We have also examined the information visualization virtues as an outcome of systematic data analysis 
and demonstrated that it is pivotal in decision-making and communication, when supported by structured 
data. It is far more efficient in quickly perceiving the status and the forecasts, such as when progress 
monitoring is performed. Even in fault diagnosis, visualization tools may assist in capturing the temporal 
evolution of a problem and lead to decisions regarding the repair or replacement of a part or equipment. 

Finally, we identified fifteen different data-related attributes/dimensions, which form a multi-
dimensional set; these dimensions are not only technical but also correspond to managerial, behavioral, 
and strategic aspects of project management. A crucial conclusion of this discussion is,  that the 
implementation feasibility and success heavily depend on the acceptance of the data analysis outcomes by 
the users. To that end, proper interpretation of requirements along with appropriate timing and stakeholder 
management must be performed. An equally important conclusion is that data analysis knowledge, tools, 
methods and S/W are widely available, thus offering multiple opportunities for the development of creative 
solutions at all levels and aspects of industrial projects. We have demonstrated in this work, some of these 
solutions, in the planning, execution or controlling phase, ranging from strictly technical to strategic, 
differing in criticality and purpose, and encompassing data that are sensor generated or provided by people, 
either slowly or rapidly varying, and maybe accepted with enthusiasm or criticism. 

The effort of cultivating DDPM is an ongoing one. The range of applications is broad and may grow to 
include portfolio decision making, long-term enterprise asset management and investment decisions as 
well as the implementation of digital twins for a small part of the equipment. In all these tasks, MDDA, 
information visualization and computational intelligence are the common denominator and guide. 
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