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Abstract

Shutdown, Turnaround, and Outage (STO) projects dealing with preventive, proactive or reactive
maintenance are among the most complex and challenging ones in process industries. Their management
is improved by incorporating advances in digital technologies and, particularly, in data analytics,
computational and artificial intelligence (Al), leading to “Data-Driven Project Management (DDPM)”. A key
issue arising is the type/nature of data that are used to support DDPM. We herein identify the key attributes
of such data and show that they form a multidimensional set.

Further, we explain how this multidimensional nature shapes the approaches to capture and analyze
data and highlight the interplay between data analytics and the digital transformation that companies
undergo, to increase their PM maturity. We demonstrate how multidimensional data analysis (MDDA) and
information visualization (IV) leverage PM efficiency, and inversely, how the increased need for holistic PM
triggers the development of sophisticated data analysis algorithms and tools. We critically evaluate how and
to what extent, the advent of machine learning (ML) can supplement/replace existing approaches and
highlight experiences from recent, pragmatic turnaround projects. A set of implemented “digital best
practices” corroborates the importance of MDDA and IV in this family of projects and favors their use.

Keywords: Data-driven project management, data analytics, information visualization, digital
transformation, computational intelligence.
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1. Introduction

Shutdown, Turnaround, and Outage (STO) projects that deal with preventive, proactive or reactive
maintenance are considered among the most complex and challenging ones in process industries. They
take place periodically depending on the needs of safe operation and quality production and their main
objective is to allow for inspections, repairs, replacements and overhauls that can be carried out only when
the plant facilities are taken out of service.

Turnarounds (T/A) typically refer to a periodic planned period of maintenance in a plant. They take place
every 3 to 5 years, with this period depending on the equipment condition, the type of industrial units, the
necessity of expansion to enrich the variety of products, etc. During their execution, the plant is not
operational in its entirety, which also gives the opportunity to inspect, revamp and perform overhauls.
Turnarounds are characterized by intense labor activity resource needs (exceeding 1,200 people/day on
average), dense and high expenditures (typically ranging between $80M to $150M), strict time constraints
(4-6 weeks), and increased uncertainty. Moreover, during turnarounds, production completely pauses,
leading to a reduction of revenue which may affect financial outcomes (Sahoo, 2014; Tsang; 1998). On the
other hand, this maintenance window allows not only for corrective repairs but also for planned inspections,
revamping, process redesign, replacements, overhauls, etc., thus safeguarding the plant operation for the
foreseeable future.

Shutdowns resemble to turnarounds, but they may affect a smaller part of the plant, usually a unitor a
cluster of units, and they do not necessarily require the full pause of operations. They may also be
unplanned, or maybe scheduled to take place when some type of shortage in the incoming raw material is
anticipated, or even may stem from an unexpected accident or a disaster. Finally, outages happen when
failures of equipment occur, when product deliveries fail to arrive, or even the power supply is interrupted;
thus, outages are mostly unplanned.
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The management of STO projects presents different challenges depending on the project type. The key
challenge is to execute the correct scope with minimum operational disruption, while fully respecting the
safety requirements, at the same time. In this regard, T/A projects are characterized by the complexity and
the plurality of the scope to be performed (typically exceeding 20,000 tasks), a situation often aggravated
because of the inherent uncertainty in the condition of the equipment to be maintained which in turn
increases risks. Thus, these projects require highly detailed, meticulous planning for an extended period,
well before their scheduled start (Bevilacqua, M., Ciarapica, FE., et. al., 2012; Shaligram, P., and Jiao, J.,
2008). Itis common for a devoted and aware planning team to spend at least 2 years for that purpose.

Shutdown projects face similar challenges, differing however in the complexity and plurality of tasks,
and quite often, in the financial impact to the industrial organization, as operation suspension is not always
necessary. As they are also mostly preventive in nature, they avail time for planning and procurement
preparation. They may profit from good practices for T/A projects, and they may generate valuable
knowledge and insights for the future. Finally, outage projects are mainly reactive in nature, thus they
require established plans and processes to exist, and they are susceptible to issues related to a lack of
spare parts, at least for critical equipment.

Evidently, T/A projects are the mostintriguing of all; they require long-term preparation, solid and holistic
PM, well-organized personnel, systematic knowledge and expertise, as well as the ability to profit from
technological advancements. They are tightly linked to the enterprise asset management strategy of a
company, may have an impact on the supply of critical products or increase the strain on other suppliers to
meet demands, and are directly related to the financial viability of an enterprise. Therefore, in this work we
focus on turnaround projects since they encompass the most complex and ambitious goals for a process
industry.

This work is structured as follows. In Section 2, we review the evolution of T/A Project Management
approaches driven by technological evolutions. Then, in Section 3, we explain the multi-dimensional nature
of data, we introduce the term of data-driven project management (DDPM), and we highlight the areas most
affected and profited from data analysis. Section 4 establishes the contextual frame of our case study,
which capitalizes on experiences over the past fifteen years in pragmatic T/A project. A set of implemented
“digital best practices”, elaborated in Section 5, strengthens the importance of MDDA, information
visualization and computational intelligence in this family of industrial projects. Finally, in Section 6, we
critically evaluate how and to what extent, the advent of computational and artificial intelligence can
supplement/replace existing approaches,. we summarize our key findings and highlight areas of future
research.

2. The Evolution of Turnaround Project Management

The management of T/A projects has followed an evolution path during recent decades. Although the
core characteristics and objectives have solidly held their place, a multitude of augmented characteristics
have appeared, activated primarily because of the capabilities that accompany the growth in data science
and information management. In particular:

° During the ‘90s, industrial companies strove to secure a complete scope of activities, to be
performed at a planned duration, subject to safety requirements. The delegation of maintenance
activities was largely a matter of expertise, while planning was tedious and often limited to only a
fewthousand tasks. The scope of equipment to be maintained was rather broad and often included
unnecessary items, only to profit from the operational downtime. Communication was vertical and
progress feedback was elementary. PM was primarily targeted to internal stakeholders.

. During the ‘00s, PM information systems permitted the planning of a larger number of tasks, while
risk evaluation tools enabled the more precise identification of equipment to be maintained. The
communication grid became denser and the progress feedback was improved. PM now included
in-house personnel as well as contractors and suppliers and addressed financial aspects.
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° During the “10s, knowledge management systems enabled rapid development of plans and offered
accurate identification and prioritization of equipment needing maintenance; information systems
and reporting permitted the generation of targeted, customized, multi-level reports; progress-
feedback became richer, timely, more accurate and more complete. Data analytics methods were
adopted to profit of the vast amount of available data and to support the corresponding DT efforts
(Lee, J., Kao, H.-A., and Yang, S., 2014; O’ Donovan, P., et al., 2015; Karim, R., et al. 2016; Uhlmann,
E., et. al., 2017).

° During the ‘20s, PM has been largely affected by the growth of data analysis, Machine Learning (ML)
and Al tools, and is becoming far more sophisticated addressing areas well beyond the planning,
execution, monitoring, and control of the T/A activities; these areas now include procurement
management, enterprise asset management, information and knowledge management, supply
and demand management, etc.

The above evolution scheme is representative of the approach that most oil & gas industries have
approached T/A projects and was propelled by the parallel burst of technological (mostly digital)
advancements. This evolution, however, necessitated the adaptation and gradual change of companies, to
encompass the benefits of the digital era, not only in the form of digital transformation but mostly in terms
of culture and governance.

The importance of data collection, analysis and utilization for the improvement of processes in T/A
projects is well documented. Shou et al. (2020) analyze and classify value-adding and non-value-adding
activities in maintenance processes, outlining the pitfalls of ineffective data management, i.e., collecting
data with no value or failing to collect vital data. The importance of data reliability is also stressed in
(Rantala, Kortelainen and Ahonen, 2021), with respect to the preparation (e.g., asset condition and
maintenance history), the execution (e.g., information sharing and quality monitoring) and closing of T/A
projects (e.g., properly updating Enterprise Resource Planning (ERP) systems with data gathered during the
process). Karim et al. (2016) use the term “maintenance analytics” to refer to the process of data
acquisition, transition, fusion, mining and information extraction and visualization in order to support
effective maintenance decision-making. The increasing volume of related data and hence of big data
analytics in T/A projects is discussed in (Al-Turki, Duffuaa and Bendaya, 2019) and references therein, also
in view of the application of “Industry 4.0” tools and techniques in maintenance (Jasiulewicz-Kaczmarek
and Gola, 2017; Silvestri et al., 2020; Tortorella et al., 2024). Accordingly, frameworks utilizing data to
establish decision support tools for T/A projects have also been proposed (Bumblauskas et al., 2017;
Mitrofani, Emiris and Koulouriotis, 2020).

In this work, we attempt to highlight the interplay between data analytics and the various dimensions of
transformation thatindustrial companies undergo, as they increase their project management maturity. We
demonstrate how MDDA and information visualization leverage the project management efficiency for
turnaround projects, and inversely, how the increased needs for more efficient and holistic project
management trigger the development of ever more sophisticated data analysis algorithms, techniques and
tools.

3. The Multiple Dimensions of Data and their Role in PM Evolution

The management of complex and challenging projects (including industrial ones, such as turnarounds),
can be vastly improved by profiting from the advances in digital technologies and particularly, in data
analytics. A plethora of data from diverse sources can be obtained and processed for various purposes and
different objectives to support the management of challenging projects and to lead eventually to a “data-
driven PM” (or DDPM), a term we coin herein to describe the goal of continuous improvement and
transformation of PM approaches.

The question that arises therefore, is what type of data can be used to support DDPM and what is their
nature. The key attributes of these data constitute a multi-dimensional set, each dimension of which
corresponds to one attribute. We have identified these independent dimensions to be:
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The appropriate data acquisition frequency (implicitly affecting the size of the data set) — thisis also
related to the change pace of data and to the ability of data sources to produce/provide updated
datasets

The change pace of data (fast to static; affects the span of information validity) — fast changing data
are those that have a very brief validity lifecycle, as in the case of work updates; semi-static data
may be sensory readings for a slowly-evolving malfunction

The data types (technical, financial, etc.) — these data can be obtained from field operations (for
instance, to report progress), from other software applications (for instance, when financial or
inventory data are needed), from planning teams (for instance, when updates and re-planning are
performed), etc.

The data sources (e.g., sensors, people) — data regarding project progress are mostly provided by
humans using appropriate digital tools, while data that are used for predictive maintenance
purposes are mainly obtained by on-board equipment sensors (e.g., vibration, temperature,
acceleration, etc.)

The diversity of information dissemination objectives (e.g., field guidance, management overview)
—this characteristic has an impact on the tools and strategies that may be employed to serve the
purpose

The expected frequency of updates of derived information — this is mostly important when primary
dataisvarying, thus prompting the need to frequently update information

The criticality of information-based decisions (proactive, tactical, strategic)

The lifecycle of the data analysis results and of the generated information (e.g., eventual or
knowledge generation)

The information computational and visualization requirements and types

Evidently, there may also exist other parameters/ dimensions that may characterize data, such as
cybersecurity, content sensitivity, etc., yet these are often context-specific and are thus omitted in the
present analysis.

Project teams that plan to employ data to develop tools and practices that may boost project
management in an industrial environment, inevitably should consider these multiple dimensions. This,
however, is not sufficient, as any digital tools or practices need to consider the internal and external context
of operation, the involved parties, the technological infrastructure and limitations, the culture, etc. We thus
identify four additional data-related dimensions, as follows:

Stakeholders: Which stakeholders are involved? What is their type (internal, external, etc.), their
population and their attitude towards providing data and using derived information? Are they
perceiving the change as an opportunity or as a threat? Who should be involved first and in what
role? How can we ensure their efficient engagement? What is the existing culture and how does it
change over time?

Technology: What types of software and systemic tools are in place and/or available? What
technological or technical limitations exist? Are there enough data sources to support a data-
driven transformation of PM? How can the technical integrity be assured through the seamless
operation of the Information Technology (IT) ecosystem?

Knowledge: Are there any historical data, templates or knowledge sources and repositories that
could support the transformation? Are there any processes in place? Does a coherent training plan
exist? Are mistakes and lessons learned recorded?
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° Difficulty of implementation: What are the technical elements that facilitate (or obstruct the
implementation) of data collection and processing? What are the human-related factors (e.g.,
attitude) that may inhibit the implementation and use of data practices?

Moreover, the scope of implementation of digital tools and the timing of application may decisively affect
their adoption or rejection. These two additional dimensions can thus be considered to complete the set of
data-related dimensions. These are briefly elaborated below.

° Scope of Implementation: How extensive can / should a DDPM implementation be? Are there any
constraints, industrial standards or legal obligations that dictate the need to transform? Should the
transformation concern a small internal community, or should it affect the entire organization or
even external partners?

. Timing: What is the starting point? What actions should be performed, and in what sequence so
that people trust the process? Which transformation activities are implemented over time? How
does stakeholder feedback affect the timeline? How often is the time plan revisited? When are
quick wins scheduled and what is their content?

We have therefore identified a set of fifteen different data-related “dimensions”, all of which need to be
considered when coupling data analytics methods with project management practices. Evidently, the
mining, processing, usage and transformation of data related to all phases of an industrial project also
affects the efficiency of project planning and replanning, the project governance through the conformance
to standards and regulations, the safety through the assurance and communication of regulations and
recording of incidents, and the control of project execution through timely, accurate and targeted
information. In our study, however, we confine our analysis to the aforementioned data-related dimensions.

4. Context of the Case Study

We hereby illustrate the implementation of DDPM, the distinct aspects of multi-dimensional data
analysis to support it and the resulting DT outcomes. Our findings are the result of fifteen years of working
on turnaround (and shutdown) projects in a leading oil & gas company, in two out of three main industrial
sites (refineries).

The key characteristics of our case study are:

. The timespan of our study starts in 2007 and ends in 2022; during this period, ten (10) major
turnarounds (and several shutdowns) were implemented while the functionalities of the software
centrally used (MS Project Server) were vastly improved (Fig.1).

2008 2012 2015 2017 2019

Major T/A Major T/A Major T/A Major T/A Major T/A
2009 2011 2015 2020 2022
Major T/A Minor T/A Major T/A Major T/A Major T/A

MSP server 2007

MSP server 2010

MSP server 2013
MSP server 2016
MSP server 2020

Fig. 1 Timeline of Major Events and Platform Evolution (different colors for distinct sites).

. The average duration of execution was 38 days (on a 24/7 schedule) with an average of
750.000 person-hours in total, from almost 2.000 people per day.
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° The human resources were internal and external, multi-national, individuals or contractors, with
appropriate training; special (and support) teams were also involved.

° All types of equipment that can be encountered in such an industrial environment were subject to
maintenance; these were heaters, columns, heat exchangers, reactors, vessels, compressors,
valves, instruments, etc. The scope of maintenance progressively increased through the years as a
result of implemented DDPM practices (Fig. 2).

2009 2011 2015 2020
Major T/A Minor T/A Major T/A Major T/A

o ©

# of Tasks planned

23804
14952

7100 5778

]

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

_

2181

# of Eqpt items planned 1478

544
312
_ —
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Fig. 2 Temporal Evolution of Scope (for one site).

° Apart from the typical maintenance works, inspections, repairs, and overhauls were also
performed; planning also integrated general stoppage/startup and
decontamination/commissioning tasks.

e The average planning duration to provide the pre-execution baseline was about 2.5years and
involved multiple divisions and departments of the company.

Our efforts culminated with the time-phased development of a number of “digital practices” (DPs) that
addressed the ever-growing needs and requirements and ended up forming a robust infrastructure for
DDPM. These DPs were then standardized and adopted.

In Table 1 below, we summarize the timeline of requirements, tools, a delegation of the implemented
digital practices, and other useful indices that explain our methodology.
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REQUIREMENTS* T/A | Key Digital Practices (DPs) Areas affected
* To have a good depiction of schedules for static equipment only 2> DP1: Standardization of PM processes and | Integration
3 Establishment of SPMO development of Shutdown Project | Scope
§ 2 Management Office (SPMO)
N
* To obtain good estimates DP1: Improved version Scope
* To include plant and unit works in the scope DP2: Development of tool for risk-based scope | Scheduling
~ * To model and monitor major contractors 5 freeze Procurement
g » To establish key planning and controlling processes and issue KPls DP3: Templates for equipment (as flow charts,
S » To report the progress of critical tasks WBS and schedules)
D * To integrate in the MSP server and organize portfolio DP4: Projects and portfolio repository
* To include all works for all equipment types DP3, DP4: Improved versions Scope
o * To create templates for work families DP5: Knowledge repository Scheduling
;T, * To enable collaboration 2 DP6: Visual tools for collaboration and | Communication
S * To create visual reports communication Knowledge
N * To develop knowledge repositories
* To pluralize communication tools & channels DP2: Development of tool for risk-based scope | Scope
© * To integrate data from different sources freeze using fuzzy logic Scheduling
© * To employ newer tools and functionalities 1 DP4, DP5, DP6: Improved versions Communication
§ * To utilize lessons learned Knowledge
 To create fully dynamic, real-time, visual reports DP6: Improved version Integration
o * To develop robust forecasting algorithms DP7: Graphical tools Strategy
g * To be risk-proactive 2 DP8: Business Intelligence (Bl), reporting & | Communication
S * To address procurement needs forecasting tools Knowledge
N * To employ more advanced data analysis methods Asset Management
' * To integrate into one platform as a single point of communication DP7: Improved version with geographic info Communication
§ * To test the feasibility of predictive maintenance in pilot equipment 1 DP9: Automated data acquisition and analysis | Knowledge
N for fault diagnosis using ML Asset Management

* Items in bold indicate requirements that created conflicts among stakeholders
*Items in italics indicate Digital Transformation relevant requirements and/or technological challenges
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The above table sheds light into the modular, time-phased, and enriched implementation that took place
and progressively created a DDPM mentality and methodology, which contributed to the overall digital
transformation of project management in this company, largely by profiting of the advent on digital
technologies. It should, however, be stressed that success cannot be accomplished by merely applying data
analysis tools and methods; rather, it requires that one has a broader perspective and understanding on the
multiple dimensions of data, which are not only technical but also (and probably, mostly) human oriented.

Notice that Digital Practice 1 (Standardization of PM processes of SPMO) is considered fundamental for
the efficient PM of T/A projects. It turned out that the use of PM tools and techniques is very useful for T/A
projects due to the complexity of the process, the high cost, high risk, the large amount of resources involved
and the short duration. Additionally, the standardization of processes triggers the examination of necessary
aspects to be managed in these projects, such as the collection of requirements, the analysis and freezing
of the scope, the scheduling structure and techniques, the communications mentality, the procurement
monitoring, etc. A formal organizational structure, an SPMO, is thus absolutely essential for the proper
management of such projects. The results of this effort have been presented in (Emiris, 2013).

5. Implementation Cases

We now highlight the role of data multidimensionality through four distinct cases of data usage and the
corresponding DPs, obtained from our experience on T/A projects:

(i) Data were obtained from focus groups and key stakeholders and were used to develop DP2 that
resulted to a tool for risk-based scope freeze using fuzzy logic;

(ii) Field data obtained from execution teams (workers) to report the progress of works and generate
instructions; these were employed to develop DP6

(iii) Secondary data generated from the PM information system to extract forecast completion times
and costs; these were employed to develop DP8

(iv) Sensor data were obtained from equipment to evaluate maintenance needs and to produce DP9
dealing with the automated data acquisition and analysis for fault diagnosis using ML

In view of the above, we can characterize these data as follows (Table 2).

Table 2 Characterization of Data Types and Data Dimensions

Data Types

Data Dimensions Focus groups Field data Project data Sensordata
. 2-3 times during 1-2 times per day 1-2 times per day A few seconds

Data acquisition .

planning every day fora
frequency

week
Data change pace Almost invariant Varying Slowly varying Semi-static
Data types Technical, cost Technical, safety Time, cost, KPI Technical
Data sources data People, historical People Information system | Sensors
Diversity of Planning Field guidance Management Maintenance
dissemination Safety Reports and overview planning
objectives updates
Frequency of Twice/year Once/day Once/day Once every 3-6
information updates months
. e Proactive Proactive Tactical Proactive

Decisions criticality . . .

Strategics Tactical Strategic
Data analysis and Permanent Eventual Eventual Knowledge dev’t
information lifecycle | Knowledge dev’t
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Computational and Bl and Fuzzy Logic Bl tools Bl tools ML and Bl tools

visualization (FL) tools
requirements and
types
Motivated Field workers, Middle and senior Engineers,
engineers, internal, express management, internal &
contractors, need concerns, need positive, main external,
Stakeholders training training, motivated source of specialized,
requirements enthusiastic,
need
encouragement
Simple digital tools, | Existence of project | Advanced and
spreadsheets, or portfolio IS specialized
Technology tablets software tools,
high-computing
power
Past reports Templates for Customized and Benchmarks,
Knowledge progress repo~rting, standardized hi§toricaldat§,
required training for | forms, graphs, failure analysis
accurate reporting reports
Implementation Low Moderate to low Moderate Moderate to high
difficulty
Starting from focus | Starting from Starting from Long-term efforts
groups, approval internalteams and internal for specific family
Scope of from top focus groups and managementteam | of equipment,
implementation management expanding to all and expanding to expanding
sorts of people and | all departments gradually
works and levels
Fundamental Among the very first | Once systems are Appropriate only
g planning activity data-related in place and for mature stages
activities enterprise PMis
established

We now elaborate on these digital practices.

5.1 DP2: Development of Tool for Risk-Based Scope Freeze using Fuzzy Logic

In this DP, data obtained from focus groups and key stakeholders to evaluate, mitigate and freeze the
project scope, using fuzzy logic (FL). Towards this, we developed a Decision Support System (DSS) that
employs fuzzy logic to help define the scope of maintenance works in T/A projects. The developed system
encompasses and combines crisp technical and functional parameters with experts’ judgment to generate
a “verdict” on whether or not to include the equipment in the project scope; moreover, constraints were
applied to ensure the fulfillment of legal obligations or operational necessity and to exclude compromise in
Health, Safety and Environment issues.

Proper scope definition is fundamental for project planning and execution, and of paramountimportance
in T/A projects. The necessary data were collected only a few times during planning, as they remain rather
invariant. Stakeholders were positive in providing the data and in maintaining a historical information
database. We first invited stakeholders, organized in focus groups, to provide data for certain parameters

that were combined to calculate the so-called Justification Factor (or J-factor) introduced by Shell company
I ——
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(Shell, 2000), which is based on the evaluation of risk factors (before and after maintenance); this factor is
then compared with the relevant maintenance cost, resulting to a mostly cost-centric decision. In our
implementation, we modified this decision mechanism by introducing new parameters for which data were
obtained. These parameters were: the Mean-Time-to-Repair (MTTR), the Mean-Time-Between-Failures
(MTBF), the Reliability (REL), and the Value of the Equipment (VAE), for each piece of equipment, along with
the Criticality (CRT) of the equipment to the overall operation (as evaluated by experts) and the Total
Operational Cost (TOC) resulting from equipment failure.

A fuzzy-logic tool developed specifically for this purpose, generated a ranking and categorization of
equipment in terms of need and urgency to maintain, and provided a much more reliable scope of works.
Figure 3 displays the structure of the developed system, while Figure 4 illustrates the membership functions
for the variable CRITICALITY and decision surfaces for combined criteria. These explanatory visualizations
of the decision surfaces and the resulting numerical results helped mitigate risks and optimize scope freeze.
More results were presented in (Mitrofani and Emiris, 2019; Mitrofani, Emiris and Koulouriotis, 2020).
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Fig. 4 Membership Functions for the CRITICALITY Attribute and Decision Surfaces for Combined Criteria
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5.2 DP6: Visual Tools for Collaboration and Communication

In this DP, we faced from key stakeholders the requirement to create clear, well-understood, friendly,
dense and meaningful reports, preferably visual, to enhance communication and to encourage
collaboration. This requirement aimed to bridge a bi-directional gap: firstly, the gap between the need to
obtain accurate and timely information from the field and the often scarce, erroneous, and unreliable
information realistically obtained; secondly, the gap between the need to produce clear, timely and focused
instructions to the workforce and the reality of spontaneous, generic, redundant set of instructions
generated.

In a pragmatic T/A setting, this is indeed a very crucial requirement: simplicity and friendliness of reports
enhances participation and improves accuracy; accuracy supports prompt decision-making with clarity;
clarity helps saving time and increases safety, etc. We thus organized the frequent collection (twice a day)
of massive field data from a large number of people for a large number of tasks (>1.200 per day). These were
all eventual data in the sense that their lifecycle was limited only for the time between two reports.

Technology played a crucial role in the implementation of solution, as it enabled the development of
visual tools and the use of reports in mobile devices. Although stakeholders were skeptical (if not negative,
at times) with frequently reporting their work progress, their attitude swiftly changed to positive as they
overcame the technological barrier and realized that the reports simplified their work.

Figure 5illustrates such avisual report specifically designed to collect data from the field for the progress
of works from the directly involved stakeholders; this easy to use report fetched data and fed them
automatically to the information system. The implementation of this (and other similar reports) required the
use of SharePoint and MS Project Server Bl functionalities. Figure 6 displays another visual report that
dynamically updates a short-to-long-term calendar of upcoming works for a particular job center, based on
the input data.

TASK

DURATIO ACTUAL ACTUAL
urld  starToaTER equievienEd Task BrmiceB FnsHoaeER ~n B B starr B finsH B sarB cdM PREDECESSORS x
K-4102: Refractories inspection onthe (K-4102: Catalyst deaning around
19/9/2020 08:00 K-4102  |vessel wall (1D:108) @ |21/10/202019:00 48 75% ™ |cydones, bracings, dipleg and
25/9/202017:00 | Z-4118N  |Z-4118N: Check accumulator pre-charge @ |21/10/202008:0| 255 % P |(2-4118N: Clean reservoir)
25/9/2020 17:00 Z-4119N _ |Z-4119N: Check accumulator pre-charge ® 21/10/202008:00 2 50% > |(z-4119N: Clean reservoir)
27/9/2020 07:00 0-4106 0-4106: Inspection (ID:13) [ ] 21/10/202010:00 6 50% ™ |(0-4106: Cleaning vessel)
V-4101  |V-4101 (BLOWER): Placing fixed and (Vv-4101 (BLOWER): Placing
1/10/2020 15:00 | (BLOWER) |adjustable guide vanes (ID:20) @ |21/10/202015:00) 16 50% > |blower-gearbox
V-4101 \V-4101 (BLOWER):Placing blower-gear
2/10/202007:00 | (BLOWER) _|box (ID:19) @ | 2/10/202011:00| 32 50% |™  |(v-4101 (BLOWER): Cleaning)
((K-4102: Installation of lining,
4/10/2020 07:00 K-4102 K-4102: Shell gunning (1D:123) 2] 21/10/202000:00 401 9% I |Handpack Actchem 85))
(Z-4105: Portable lighting) - (Z-
7/10/2020 07:00 Z-4105 Z-4106: Rafractories inspection (10:300) . 21/10/202008:00 25 96 % [P |4105: Catalyst cleaning)
K-4101: Refractories maintenance
7/10/2020 07:00 K-4101 stripper section (1D:66) . 21/10/202015:00 141 95 % >~ (K-4101: Refractories inspection)

Fig. 5 Visual Report to Collect Work Progress Data from the Field in Near-Real Time.




IPMAY

Berlin | 34" World
2025 | Congress

W
9 30 |01 02 03 04 05
ILE000 SE211A 24000 2-e008 100408 100402
eE2110 62110 Fa-C069 Fi-L-005 FLED05R 100:v03
b2 114 *&211-8 F2E00 Bty 100-\-06
4E211.8 HE21TA 3260068 20001
463116 &E213-8 32-6006-C 3-R003
&E213.4 SE21EA J2-E011-A LR R i)
852134 &H-291 32-6011-B 3F103
4E213-B aH-241 2-E011-C 31206
&E213-0 a4e111 31-E011-0 40001
FE215-A el F-ErIA FEII-A
E21%.4 &H-241 J-E014-D 4241
&H-241 &E210-A EFE S LEY GH-241
..mora... more... o, T ..more...
16 o7 na 09 10 11 12
Po-v0 100408 1p0-H-001 FE-E-003-A F-R-001 FEE002-A 31-BA-001-0
00403 300401 100-R-001 F4-E-003-A FE-R-00% 34-E-001-B 38-H-101
lhanrrl J-H-001 10005 I+E003-8 Fi-R-003 I+-E0040 TeR-002
V024 Fr-h-001 F1-E-001-0 108-6-01A &H-241 20038 100-5-01A
ALDAG 3-h-001 M-E001-E ILE001-A Fi-E011-A 12-E018-D 100401
=(-101 334001 21-E001-F 21-E001-8 3-R-003 100-C-014 100403
«La101 I%C.001 J1-E002:A 116001 32-R003 100-R 3LE001R
-E-03-A G095 F1-E003-6 F1-E001-0 Fi-R-003 16%-FL-3200503-6G51 31-E-003-0
~E03-8 46008 23003 FLE001-E 23-R-001 167FL-2200503-BG51 -E001-E
-E-02-C F4-F001 11-C-005 #1-6-001-F Fi-R-003 -c001 T1-E-003-F
020 45008 3-C-008 21-E002-A 100-C-014 IL-E001-A M-E003-A
LEOT-A F4-R-001 32010 I1-E002-8 100-C-014 J1ED01A BL:ED02A
.more.. Lmere... . mare.. L.mEre.. L..mare, .mare,., mare,.,
a 44 e 16 7 10 1a

Fig. 6 Dynamic, Long-Term Calendar of Upcoming Works.

5.3 DP8: Bl, Reporting and Forecasting Tools

This DP resulted as a response to the requirements of developing robust forecasting algorithms and to
be risk-proactive, by using even more advanced data analysis tools. Forecasts that can be easily updated,
and which can be easily drilled-down per operational unit, were needed in order to plan when works would
be completed, thus permitting production and sales planning. This in turn, minimizes risks of running out of
inventory, permits determining the time that on-field logistics support will be needed (decreasing again the
costs) and helps identify problematic areas that need special attention, acceleration of works, etc.

To develop these tools, we used secondary data, that is, data generated once or twice a day from the PM
information system through data analysis. We produced either ready-made indices or customized ones and
we implemented forecasting algorithms that were fine-tuned to minimize forecasting error. These tools
helped produce meaningful reports, welcomed by the top management, and permitted strategic decision-
making. An additional benefit was that these data were all integrated in a knowledge base with historical
information that may be used in the future.

Figure 7 displays a summary progress report for one family of equipment, where works are grouped in
phases. Here, the primary data were input in the project plans and secondary data were generated to create
this report.
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Fig. 7 Summary Progress Report Using Bl Tools.

Figure 8 illustrates aforecasting report for one unit, updated twice a day, that integrates most widely used
Earned Value Management (EVM) indices along with several custom ones. Again, the cumulative indices are

aresult of processing of the primary data to generate secondary ones.

ISPl = Planned %  =mefctual% = = = Av.Prog. Rate  emRescheduled Planed% =« +e~e Modified Av. Pro. Rate

Fig. 8 Forecasting Report Generated from Secondary Data.

5.4 DP9: Automated Data Acquisition and Analysis for Fault Diagnosis using ML

In this DP, we dealt with the problem of Predictive Maintenance (PdM) for rotational equipment and,
particularly, compressors, and we applied ML techniques on large data sets obtained from on-board
sensors. Equipment with rotational components exhibit vibrational behaviors, thus we attempted to
evaluate the fault levels of certain components by analyzing vibration frequencies data (El-Thalji, I., 2019;
Mukherjee, S., Kumar, V., Sarangi, S., Bera, T.K., 2020).

We first collected high-sampling frequency data for short time periods and identified the most useful
features in the frequency and time domains from these on-board sensory datasets, that enable efficient
classification and pre-processed (filtered and denoised) the data to extract these crucial features using
computationally efficient techniques; we thus created a palette of features to be considered, and ranked
these features based on the importance and redundancy using the one-way ANOVA technique. Figure 9
displays a snapshot of the time-series of these high-frequency data obtained from experimental and real-
world settings. We, then, experimented with two different clustering and classification algorithms, namely,
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k-Nearest Neighbor (KNN), Support Vector Machines (SVM) with different kernel options, to train and test
fault classification. The obtained results, illustrated in Figure 10 along with the flowchart of the ML tool,
demonstrated high classification accuracy (to the order of 93,5%) of faults and justified the feasibility of
implementation in industrial setups.
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Fig. 9 Time Series of Data Used for Machine Learning and Fault Diagnosis
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Fig. 10 Flowchart of ML Algorithm and Classification Accuracy of Faults

A key benefit of this DP was proving the feasibility of detecting where exactly the failure occurs remotely
using only sensory data; moreover, itwas shown that itis possible to identify the level of severity of the failure
to plan maintenance works. Additionally, these actions may be implemented remotely, without
disassembling the equipment, thus leading to decrease of maintenance cost and time, increase of uptime,
and implementation of predictive maintenance strategies which help eliminate unnecessary replacement
of spare parts, reduce work effort, and minimize the risk of accidents. A detailed presentation of these
results can be found in (Emiris, 2023).

6. Critical Evaluation, Conclusions and Guidelines for the Future

In this work, we have highlighted the interplay between computational intelligence and data analytics
approaches, and the digital transformation that industrial companies undergo, as they increase their PM
maturity and culminate to DDPM. We demonstrated how multidimensional data analysis and information
visualization leverage the project management efficiency for turnaround projects, and inversely, how the
increased needs for more efficient and holistic project management trigger the development of ever more
sophisticated computational algorithms, techniques and tools.
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Ourfindings were based on experiences and practices in pragmatic T/A projects over a 15-year time span
in two main industrial settings. The main limitations encountered were related to existence and use of
technology and S/W tools, as well as to the adoption of digital practices from certain stakeholders. We have
observed that the advent of technology and the adoption of similar practices from other companies,
especially in most recent years, is acting as an enabler of DDPM; we expect this to improve further in the
coming years. We have further highlighted the use and applicability of MDDA to create visual information
tools and reports; we have also illustrated set of implemented “digital best practices” which corroborate the
importance of MDDA and information visualization in this family of industrial projects. These can be used to
support DDPM and to facilitate digital transformation efforts in companies dealing with industrial projects.

Several of the digital practices we implemented have involved elements, methods and techniques in the
domain of machine learning and computational intelligence; other digital practices have not. DP1
(Standardization of PM processes and development of a Shutdown Project Management Office) has little to
benefit from the advent of computational and artificial intelligence. In the first category, we have witnessed
a beneficial contribution in practices such as, the “development of a tool for risk-based scope-freeze using
fuzzy-logic” (DP2), “Automated data acquisition and analysis for fault diagnosis using ML” (DP9), “Business
Intelligence (Bl), reporting & forecasting tools” (DP8), “Visual tools for collaboration and communication”
(DP6), to name a few. The development of these practices is expected to be further facilitated and become
more efficient, even using common Al tools (such as Copilot for designing reports). Data acquisition,
filtering, denoising, clustering, etc., is also expected to become far easier. Moreover, WBS development,
task planning and scheduling, is already feasible in short times with the use of Al tools (although we noticed
that human intervention is still necessary).

On the other hand, there exist digital practices we developed which are not discernably benefited by
computational intelligence tools, such as, the “Standardization of PM processes and development of
Shutdown Project Management Office (SPMO)” (DP1) or the “Development of projects repository” (DP4),
although substantial use of information technology platforms is made. The soft skills of the PM and the PM
team are critical in such endeavors and will continue to be necessary for the foreseeable future.

We have also examined the information visualization virtues as an outcome of systematic data analysis
and demonstrated that it is pivotal in decision-making and communication, when supported by structured
data. It is far more efficient in quickly perceiving the status and the forecasts, such as when progress
monitoring is performed. Even in fault diagnosis, visualization tools may assist in capturing the temporal
evolution of a problem and lead to decisions regarding the repair or replacement of a part or equipment.

Finally, we identified fifteen different data-related attributes/dimensions, which form a multi-
dimensional set; these dimensions are not only technical but also correspond to managerial, behavioral,
and strategic aspects of project management. A crucial conclusion of this discussion is, that the
implementation feasibility and success heavily depend on the acceptance of the data analysis outcomes by
the users. To that end, proper interpretation of requirements along with appropriate timing and stakeholder
management must be performed. An equally important conclusion is that data analysis knowledge, tools,
methods and S/W are widely available, thus offering multiple opportunities for the development of creative
solutions at all levels and aspects of industrial projects. We have demonstrated in this work, some of these
solutions, in the planning, execution or controlling phase, ranging from strictly technical to strategic,
differingin criticality and purpose, and encompassing data that are sensor generated or provided by people,
either slowly or rapidly varying, and maybe accepted with enthusiasm or criticism.

The effort of cultivating DDPM is an ongoing one. The range of applications is broad and may grow to
include portfolio decision making, long-term enterprise asset management and investment decisions as
well as the implementation of digital twins for a small part of the equipment. In all these tasks, MDDA,
information visualization and computational intelligence are the common denominator and guide.



IPMAY

Berlin | 34" World
2025 | Congress

References

Al-Turki, U., Duffuaa, S., and Bendaya, M. (2019). Trends in turnaround maintenance planning: literature
review. Journal of quality in maintenance engineering, 25(2), 253-271.

Bevilacqua, M., Ciarapica, FE., et. al. (2012). Development of an Innovative Criticality Index for Turnaround
Management in an Oil Refinery. International Journal of Productivity and Quality Management. 9(4), 519-
544,

Bumblauskas, D., Gemmill, D., Igou, A., and Anzengruber, J. (2017). Smart Maintenance Decision Support
Systems (SMDSS) based on corporate big data analytics. Expert systems with applications, 90, 303-317.

El-Thalji, 1. (2019). Predictive Maintenance (PdM) Analysis Matrix: A Tool to Determine Technical
Specifications for PdM Ready-Equipment. In: I0OP Conference Series: Materials Science and
Engineering, Volume 700, 2" Conference of Computational Methods in Offshore Technology and First
Conference of Oil and Gas Technology. Stavanger, Norway.

Emiris, D.M. (2013). Organizational Context Approach in the Establishment of a PMO for Turnaround
Projects: Experiences from the Oil & Gas Industry. In: 27" IPMA World Congress, Dubrovnik, Croatia,
Dubrovnik, Croatia.

Emiris, D.M. (2023). Fault Classification and Diagnosis for Rotating Equipment using Machine Learning
Algorithms. In: 8" International Symposium on Ship Operations, Management and Economics (SOME
2023), Athens, Greece. doi: https://doi.org/10.5957/SOME-2023-025.

Jasiulewicz-Kaczmarek, M., and Gola, A. (2019). Maintenance 4.0 technologies for sustainable
manufacturing-an overview. IFAC-PapersOnLine, 52(10), 91-96.

Karim, R., Westerberg, J., Galar, D., and Kumar, U. (2016). Maintenance analytics-the new know in
maintenance. IFAC-PapersOnLine, 49(28), 214-219.

Lee, )., Kao, H.-A., and Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data
Environment. Procedia CIRP 16. 3 - 8. Elsevier.

Mitrofani, I.A., and Emiris, D.M. (2019). A Fuzzy Logic DSS for Scope Optimization in Industrial Maintenance
Projects based on Reliability Targets. In: EURO 2019 Conference, Dublin.

Mitrofani, I.A., Emiris, D.M., and Koulouriotis, D.E. (2020). An Industrial Maintenance Decision Support
System based on Fuzzy Inference to Optimize Scope Definition. In: Procedia Manufacturing. Vol. 51, 1538-
1543.

Mukherjee, S., Kumar, V., Sarangi, S., Bera, T.K. (2020). Gearbox Fault Diagnosis using Advanced
Computational Intelligence. In: Int. Conf. Computational Intelligence and Data Science (ICCIDS), Procedia
Computer Science. 167, 1594-1603.

O’ Donovan, P., et al. (2015). An Industrial Big Data Pipeline for Data-Driven Analytics Maintenance
Applications in Large-Scale Smart Manufacturing Facilities. Journal of Big Data. 2:25, Springer.

Rantala, A., Kortelainen, H., and Ahonen, T. (2021, August). Turnaround Maintenance in Process Industry:
Challenges and Potential Solutions. In World Congress on Engineering Asset Management (pp. 196-207).
Cham: Springer International Publishing.

Sahoo, T. (2014). Process Plants: Shutdown and Turnaround Management. Taylor & Francis.

Shaligram, P., and Jiao, J. (2008). Turnaround Maintenance Management in a Processing Industry,” Journal
of Quality in Maintenance Engineering. 14(2), 109-122.


https://inderscience.metapress.com/content/119865/?p=7ba93a5fb7ae4d2dabb234635f9dadfd&pi=0
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/700
https://iopscience.iop.org/issue/1757-899X/700/1
https://iopscience.iop.org/issue/1757-899X/700/1
https://doi.org/10.5957/SOME-2023-025
https://scholar.google.com/citations?view_op=view_citation&hl=el&user=pkXVAoQAAAAJ&sortby=pubdate&citation_for_view=pkXVAoQAAAAJ:r0BpntZqJG4C
https://scholar.google.com/citations?view_op=view_citation&hl=el&user=pkXVAoQAAAAJ&sortby=pubdate&citation_for_view=pkXVAoQAAAAJ:r0BpntZqJG4C

IPMAY

Berlin | 34" World
2025 | Congress

Silvestri, L., Forcina, A., Introna, V., Santolamazza, A., and Cesarotti, V. (2020). Maintenance
transformation through Industry 4.0 technologies: A systematic literature review. Computers in industry,
123, 103335.

Shell (2000). S-RCM Training Guide, Shell-Reliability Centered Maintenance. Shell Global Solution
International.

Shou, W., Wang, J., Wu, P., and Wang, X. (2020). Value adding and non-value adding activities in turnaround
maintenance process: classification, validation, and benefits. Production Planning & Control, 31(1), 60-77.

Tortorella, G. L., Saurin, T. A., Fogliatto, F. S., Tlapa Mendoza, D., Moyano-Fuentes, J., Gaiardelli, P., ... &
Macias de Anda, E. (2024). Digitalization of maintenance: Exploratory study on the adoption of Industry 4.0
technologies and total productive maintenance practices. Production Planning & Control, 35(4), 352-372.

Tsang H.C.A. (1998). A Strategic Approach to Managing Maintenance Performance. Journal of Quality in
Maintenance Engineering,4(2), 87-94.

Uhlmann, E., et. al. (2017). Decentralized Data Analytics for Maintenance in Industrie 4.0. In: 27th Intern.
Conf. on Flexible Automation and Intelligent Manufacturing, FAIM2017. Modena, ltaly, Procedia
Manufacturing 11, 1120 - 1126.



